The Web for Automotive Professionals & Car Enthusiasts



SLR McLaren Roadster

Mercedes SLR 722 Edition

CL 63 & S 63 AMG


Mercedes E-Class 2006

Mercedes R-Class

Maybach Exelero

Mercedes B-Class

Mercedes M-Class 2005

Mercedes 300 SL

Mercedes CLS 2005

Merceds SLK 2005

C-class 2005

SLR 300

F 400 Concept


C Coupe

C Estate 32 AMG



SLR Study



Privacy Statement

© 1998 - 2007 Copyright &

Automotive Intelligence,
All Rights Reserved .
For questions please contact 

Chrysler  Jeep   Dodge Cars   Dodge Trucks   Plymouth   Mercedes-Benz   Smart   Maybach

Mercedes-Benz: F400 Carving

DaimlerChrysler presents F 400 Carving research vehicle with dynamic chassis technology at the Tokyo Motor Show 2001

DaimlerChrysler is exhibiting a special concept study at the 35th Tokyo Motor Show: the F 400 Carving is a research vehicle packed with dynamic systems designed to give the cars of tomorrow and beyond substantially enhanced active safety, dynamic handling control and driving pleasure.

The main attraction in the F 400 Carving is a new system that varies the camber angle on the outer wheels between 0 and 20 degrees, depending on the road situation.


Mercedes-Benz F400 Carving Study
Click image for larger view

Used in conjunction with newly-developed tyres, it provides 30 percent more lateral stability than a conventional system with a fixed camber setting and standard tyres.

This considerably enhances active safety, since better lateral stability equals improved road adhesion and greater cornering stability.

Mercedes-Benz F400 Carving Study
Click image for larger view

Mercedes-Benz F400 Carving Study
Click image for larger view

Active camber control boosts the research vehicle's maximum lateral acceleration to 1.28 g, meaning that the concept study outperforms current sports cars by some 28 percent.

The active camber control in the F 400 Carving paves the way for an equally new asymmetrical-tread tyre concept. When the two-seater car is cornering, the outer wheels tilt inwards, leaving only the inner area of these tyres in contact with the road. This area of the tread is slightly rounded off. Meanwhile both the tread pattern and the rubber blend have been specially selected to ensure highly dynamic and extremely safe cornering.

When driving straight ahead, however, it is the outer areas of the tyres that are in contact with the road. These areas have a tried-and-tested car tread pattern, offering excellent high-speed and low-noise performance. Two different concepts therefore come to fruition in a single tyre, thanks to active camber control.




Mercedes-Benz F400 Carving Study
Click image for larger view

The research vehicle's "Carving" epithet symbolises the new technology, evoking images of the high-speed winter sport in which adepts perform sharp turns on a specially-shaped high-grip ski.

Less risk of skidding and shorter emergency stopping distance

The F 400 Carving is something of a mobile research laboratory for the Stuttgart-based automotive engineers. They will be using it to investigate the undoubted further potential of this new chassis technology: besides offering excellent directional stability during cornering, the new technology ensures a much higher level of active safety in the event of an emergency. By way of example, if there is a risk of skidding, the wheel camber is increased by an appropriate degree.

The resultant gain in lateral stability significantly enhances the effect of ESP®, the Electronic Stability Program. If the research car needs to be braked in an emergency, all four of its wheels can be tilted in next to no time, thus shortening the stopping distance from 100 km/h by a good five metres.

Mercedes-Benz F400 Carving Study
Click image for larger view

Electronic steering, active hydropneumatic system and light from glass fibres

In addition to active camber control, the F 400 Carving research car is fitted with other forward-looking steering and chassis systems, including a steer-by-wire system. Sensors pick up the driver's steering inputs and send this information to two microcomputers which, in turn, control an electrically driven steering gear. The DaimlerChrysler engineers also charted new territory when it came to the suspension tuning, and introduced a first: an active hydropneumatic system that optimises the suspension and shock absorption in line with the changing situation on the road, all at lightning speed.

The F 400 Carving is also the showcase for a totally new form of lighting technology developed by the Stuttgart-based researchers: fibre-optic lines are used to transmit light from xenon lamps beneath the bonnet to the main headlamps. This technology stands out by virtue of its high performance and extremely space-saving design. Additional headlamps positioned on the sides also come on when the car is cornering.

Exciting design symbolising innovation and emotion

The F 400 Carving is an exciting and harmonious blend of technology and design. The shape of the sports car - notably its distinctive wing profiles - provides the necessary room for the wheels to move when the active camber control is at work during cornering and, at the same time, emphasises the youthful and highly-adventurous nature of this concept study. In order to reflect the research car's high-quality driving dynamics, the designers opted for a speedster concept - incorporating an extended bonnet, a windscreen with an extremely sharp rake, a short tail end and an interior tailor-made for two.

 Photos: Mercedes












.Homepage   News   Companies   Management   Events Careers  Guestbook   Search